

BCH-003-001515

Seat No.

Third Year B. Sc. (Sem. V) (CBCS) Examination

August - 2021

BSMT - 503 (A): Mathematics

(Discrete Mathematics and Complex Analysis - I) (Old Course)

> Faculty Code: 003 Subject Code: 001515

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All the questions are compulsory.

- (2) Q. 1 contains 20 short questions of one mark each.
- (3) Q. 2 and 3 carry 25 marks each with internal choices.

1. Answer all the Questions.

[20]

- 1) 'R is not reflexive means that R is irreflexive' (TRUE/FALSE).
- 2) If $R = \{(1,1), (1,2), (1,3)\}$ is a relation on $A = \{1,2,3\}$ then find R^{-1} .
- 3) Define inverse relation.
- 4) Define Complemented lattice.
- 5) Define symmetric relation.
- 6) Define equivalence relation.
- 7) Define transitive relation.
- 8) Define sub Boolean Algebra.
- 9) Define complete lattice.
- 10) Find $\mathbb{P}(A)$ where $A = \{1,2,3,5\}$.
- 11) Define complex function.
- 12) Define Atom in Boolean Algebra.
- 13) Write entire function.
- 14) Define harmonic function.
- 15) Define analytic function.
- 16) Define Jordan arc.
- 17) Write Laplance equation.
- 18) Evaluate $\lim_{z\to\infty} \frac{2z-5}{z-2i}$.
- 19) Define smooth arc.
- 20) State Green's theorem.

2(a). Answer any three out of six.

[06]

- 1) Simplify the Boolean expression $[a*(b\oplus b')]*[a'\oplus (b*b')]$.
- 2) Give an example of a Bounded Lattice which is not Complemented Lattice.
- 3) Draw Hasse Diagram of (S_{12}, D) .
- 4) Prove that (S_{30}, D) is Poset.

- 5) In usual notation prove that A(x') = A A(x).
- 6) For Boolean Algebra $(B,*,\oplus,',0,1)$ prove that $(a \oplus b) * (b \oplus c) * (c \oplus a) = (a * b) \oplus (b * c) \oplus (c * a).$

(b). Answer any three out of six.

[09]

- 1) Define lattice and show that (S_6, D) is lattice.
- 2) State and Prove Modular Inequality.
- 3) In the lattice if $a \le b$ and $c \le d$, then prove that $a * c \le b * d$ and $a \oplus c \le b \oplus d$.
- 4) Show that similarity of Matrices on the set of $n \times n$ matrices is an equivalence relation.
- 5) If Boolean Algebra $(B, *, \oplus, ', 0, 1)$ and $x_1, x_2 \in B$ then prove that $A(x_1 * x_2) = A(x_1) \cap A(x_2)$
- 6) Obtain Cube array representation of Boolean function $f(x_1, x_2, x_3, x_4) = x_1(x_2 + x_3x_4')$.

(c). Answer any two out of five.

[10]

- 1) Prove that every chain is distributive lattice.
- 2) Prove that Direct product of Two lattice is also a lattice.
- 3) State and Prove De' Morgan's Law.
- 4) State and Prove Stone Representation Theorem.
- 5) If $A = \{a, b, c\}$ then show that (S_{30}, D) and $(P(A), \subseteq)$ are isomorphic lattice.

3(a). Answer any three out of six.

[06]

- 1) Show that $f(z) = \bar{z}$ is not analytic.
- 2) Show that f(z) = (3x + y) + i(3y x) is entire function.
- 3) If f = u + iv and it's complex conjugate $\overline{f} = u iv$ is analytic then show that f is constant.
- 4) State Lioville's Theorem and Fundamental Theorem of Algebra.
- 5) Prove that $f(z) = (z^2 2)e^{-x}(\cos y i\sin y)$ is analytic.
- 6) Find value of $\int_C z^2 dz$ where C is part of $y = x^2$ from z = 0 to z = 1 + i.

(b). Answer any three out of six.

[09]

- 1) is Complex function $f(z) = \frac{1}{z}$ entire?. Justify your answer. 2) Prove Laplace equation in Polar Form.
- 3) Prove that $u=r^2\sin 2\theta$ is harmonic function and find its conjugate.
- 4) Prove that $\left| \int_C \frac{1}{z^2} dz \right| < \sqrt{2}$, where C is the line segment joining points z=2 and z=2i.
- 5) State and Prove Cauchy's Inequality.
- 6) In usual notation prove that $\left| \int_{C} f(z) dz \right| \leq ML$.

(c). Answer any two out of five.

[10]

- Prove that the analytic function of constant modulus is also constant in its domain.
- 2) State and Prove C-R Condition in Polar form.
- 3) State and prove Cauchy integral formula.
- 4) State and Prove Morera's Theorem.
- 5) Show that $\left| \int_C \frac{\log Z}{z^2} dz \right| < \frac{2\pi(\pi + \log R)}{R}$ where C: |z| = R and R > 1.